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Abstract

This report discusses implementation of a multilevel adaptive mesh refinement (AMR) finite-
difference time-domain (FDTD) transverse electric (TE) code that simulates scattering of a Gaussian
pulse or a harmonic wave on various metal structures.

Perfectly matched layer (PML) absorbing boundary conditions (ABC) are provided to eliminate
unwanted reflections off the domain boundary. The Gaussian pulse or a harmonic wave is injected
into and then extracted from the total field region, within which the multilayer AMR computation
unfolds. There is no limit, other than that imposed by available computer resources, on the number
of AMR levels.

Gnuplot and HDF5 animations generated by the program illustrate propagation of electric and
magnetic fields at all AMR levels, as well as AMR cell tagging and evolution of the fine level grid
structure.

Open issues are flagged with the @ sign on the margins. They are discussed, wherever there is
anything constructive to say about them and related further development work is suggested.
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1 The Drude Model

Here I merely quote various formulas of the Drude model without discussing where they come from.
A good source in this case are Mike Nielsen’s lecture notes, which were put on his private “blog”,
[10]. Just about all this stuff is covered in Feynman, [4], too, but it’s not referred to as a “Drude
Model”. Also, Feynman scatters this material over various chapters and volumes even — so it’s not
all just in one place under the heading “Theory of Conduction in Metals”.

As Michael Nielsen points out, quoting from “Solid State Physics” by Ashcroft and Mermins, [1],
the Drude model of metals breaks in the quantum domain and even its various high temperature
predictions do not agree with experiments very well, so that quantum theory has to be invoked in
order to get correct expressions for conductivity. But the general form that the Drude model assumes
within the framework of Maxwell equations works very well, as long as we use phenomenological
expressions for plasma frequency, wp, and for the relaxation time, 7.

On the other hand I strongly suspect that the model may break in the nano-physics regime. In
order to build a plasma mode that quenches an electromagnetic wave penetrating a nano-grain a
certain amount of space is needed. If the grain is smaller, there may not be enough space in it for the
mode to form and so the grain may prove more transparent than the Drude model would predict.
But then quantum effects may produce surface plasmons and so the grain may actually end up being
less transparent than the Drude model would predict.

Whichever is the case, we may end up observing a discrepancy between computational predictions
derived from the classical Drude model alone and laboratory experiments.

Anyhow, here’s the model.

e N is the number of valence electrons per unit volume.

e 7 is the number of valence electrons per atom.

N, is the Avogadro number, i.e., the number of atoms per mol.

Pm is the mass density of metal.

A is the atomic weight of metal

N =Z XNy X pp/A

7 is the current density.

(v) is the average velocity of electrons.

7 is the collision time.

o is the conductivity.

Jj= _NQe<v>

also
(v) = —qeET/m,

hence

and



e (p) is the average electron momentum.

e F' is the force acting on electrons.

dp) _ (P
@ - TF

e w frequency

e { time
Suppose
E(t) = Eoezm
Assume .
(p) = (o™
then )
iw(p)o = \Pio _ o O]
T
hence
<p> — _quO
T Wt 1/T
Since
J = —Nge(v)
and
(v) = (p)/me
we get )
. —Nge —qeEy qu/me
Jo ge(v)o Ge(P)o/me Me iw+1/T  dw+1/7T 0
where .
_ Ng; /me
iw+1/7
1.1 Maxwell Equations
e M is the magnetic current.
e D=¢E
e B=yuH
o e =¢yk =¢€o(l+x)
e y is the electric susceptibility.
9B = —-VXxE-M
ot
oD = VxXH-J
ot
V-D = 0 in absence of free charges
V-B =0



Consider the V x H equation for the Drude model:

E
VXH:eoaa—t—i—aE

Assuming again that E = Ege™!

0 1o 0 o/eo
VXH—EO&(E—}———E)—QGO(].—F - )E

hence we can rewrite this as

where

D = € (1+a/60)E

= o1+ f?ufi"f?’)) .

_ . (Hqu/(eome))E

—w? +iw/T
But
ng 1 2

1 =
+ eome —w? + iw/T n

where
e 7 is the refraction index.
o Ng2/(eome) = w? is the plasma frequency

e and the above equation is the same as Feynman 32.38 (vol. II) [4] arrived at from the other
side, i.e., by considering x for plasma and then € = ey(1 + x).

So we can look at the plasma currents either as a contribution to D = €p(1 + x)E or we can look at
them explicitly in terms of j = ¢ E with the same effect in terms of Maxwell equations.
Using wy in place of NqZ/(egmne) we get:

Now, this equation holds only when both D and FE vibrate with the same frequency w, i.e., strictly
speaking we should write here:

2
N . w ~ .
D(w)ezwt = €y (1 + 7]’) E(w)ezwt

—w? 4+ iw/T

with D(¢) and E(w) connected by:

L jwt L[ wp . jwt
D(t) = — D dw = — 1+——— | E “rd
*) 27 /OO (w)e™ dw 27 /oo oftt —w? +iw/T (w)e™ dw



and
1 [ . ;
E(t) = —/ E(w)e™ dw
2 J_

I have multiplied the integrals by 1/(27) in order to make them into full inverse Fourier transforms.
The transformation in the other direction is without the 1/(27) factor:

D) = /_oo D()e— " dt

Ew) = /_oo E(t)e %t dt

The first term under the integral simply becomes E(t) so:

D(t) = e E(t) + 0 /oo wif’ig(w)eiwt dw
0 21 J_oo —w? +iw/T

The fraction w3/(—w? + iw/7) can be split into a sum of two simple fractions:

2 2 2
wp wp T wp T

—w? tiw/T  iw  dw+1/7

so that
1 . 1 o0 1

1 .
D(t) = e E(t) + eowIZ,T (%/ EE(w)e“"t dw — o Y
— 00 —00

E(w)e™? dw)

Both integrals enclosed between the large round brackets translate into convolutions following the
convolution theorem:

where f(t) is the complementing component of the Fourier transform pair ( f@),f (w)) [15].
Consider the first integral. The relvant Fourier transform pair in this case is:

(o)

where 0(t) is the Heavyside step function, i.e.,

0 fort<O
H(t)_{ 1 fort>0

Consequently
1 o0

00 t
L7 L et dw = / ot — )E(t') dt’ = / B dr
2 J_ o tw oo —oo
because (¢t —t') =0 for ¢’ > ¢ and 1 otherwise. Making use of the assumption that for t <0 E =0

we get:
1 [ 1. . ¢
L7 et dw = / E()dt’
2 J_ o tw 0
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Now let’s figure out the second integral

i/ ;E(w)ei‘“t dw

21 J_iw+ 1/7

The relevant Fourier transform pair is

Consequently

1 [ gt Je—(t=t)/7 ' /t (=) 7 (4 44!
— = E(t = E
27r/ zw+1/7- dw = / ot (t') dt Oe (t') dt

where, as before, we made the assumption that E = 0 for ¢ < 0.
Adding all terms together we obtain

t t
D(t) = E(t) + 600.112,7' (/ E(t’) dt’ — / e—(t—t')/'rE(tl) dt')
0 0

Observe that both integrals yield correct units, because the units of sz dt cancel and so we get just
eoF in both cases. Similarly (¢ —t')/7 is unitless.
Now the resulting Maxwell equations become:

oD

% VxH
t t

D(t) = eE(t)+ euwit ( / E(t')dt' - / e_(t_t')/TE(t’)dt’)
0 0

ot Ko

1.2 Elimination of ¢; and py

I’'m going to show how to drop these pesky €y and pg. They are nasty two little numbers to have in
computations:

€0 = 8.854185 x 1072 F/m
po = 4 x 107 H/m

The reason for their nastiness is that SI units are not “natural”. We can get rid of both by doing
the following:

E = J2E
Ko

~ 1

D = D
[=7%)

1
c = 4/ speed of light in vacuum
€010



The resulting Maxwell equations are now:

oD = ¢cVxXH
ot i
D = KE
B_H = —¢VxE
ot
Replacing t — ct = t yields:
oD
- = VxH
ot i
D = kE
oH -
— — —V X E
ot

where £ is the dimensionless parameter from € = €. Because it is dimensionless, it doesn’t change.
We are now going to drop the tilde from D, E and # and we’re going to rewrite our integral-
differential system of equations for the Drude model:

oD

5 V xH (1)
D(t) = E(t)+wir (/OtE(t')dt'—/Ote_(t_t')/TE(t’)dt') (2)
OH

ot = —-VXE (3)

where t, t', dt’, wp and 7 have to be recalculated in units of ct, i.e., in meters, or in some other more
appropriate units of length. It’s best to scale the unit of length to the problem at hand and make the
grid spacing at the coarsest level be equal 1 unit of length. In these units light in vacuum propagates
across one grid spacing in one unit of time.

1.3 Extracting E from D

In order to solve equations (1) through (3) we must be able to extract E from equation (2). There
are various ways to do this and here I am going to discuss three procedures.
The first two derive directly from

t t
D(t) = B(t) + w?r ( / B()dt — / e /T By dt')
0 0
which we can discretize as follows:

n n
D" =Bt uir (Z BEAL - e (kAT g At)
k=0 k=0

Observe that for k = n the exponent function in the second integral becomes 1, so that the E" terms
of both integrals cancel. Hence

n—1 n—1
D" = E"+ w?,TAt (Z E* — Z e_("_k)At/TEk)

k=0 k=0
n—1 n—1

= E"+ ngAt (Z EF _ e—At/T Ze—(n—l—k)At/TEk>
k=0 k=0



1.3.1 The Double Current Method
Define:

o wiTAt Sr o, EF =11

. wgrAt Zz;é e—(n—1-k)At/T gk _ gn-—1

Now observe that

E" = D"— In—l + e—At/TSn—l
m = 4+ ngAtE"
S" = e TS 4 Wlr ALE"

These three equations provide us with the time-stepping procedure that lets us extract E from D
at every time step and, at the same time, prepare I and S for the next time-step.

There is a substantial memory overhead in this computation. We have to maintain a copy of E,
D, I and S, apart from H, and this may become a burden on systems with limited memory.

1.3.2 The Single Current Method

It is possible to combine S and I into a single entity, let us call it M, but in this case the computation
becomes more complex and we have to use M™ ! and M™ 2 in order to generate M", so we don’t
gain anything in terms of memory savings and end up paying a higher computational price for it.
Nevertheless it is instructive to see how this comes about.
We start from
E" = D" — Mnfl

where
M = WAy (1 _ e_(”_k)At/T) E*
k=0
n—1
_ wz%TAtZ (1 _ e—At/Te—(n—l—k)At/T> E*
k=0
Similarly
n—2
M2 — “’z%TAtZ (1 _ efAt/'ref(anfk)At/T) E*
k=0
n
M" = “’IgTAtZ (1 _ e—At/re—(n—k)At/T) Ek
k=0

We are going to demonstrate that M™ is a linear combination of E", M" ! and M" 2
M" =aE" +bM" ' + cM" 2

To simplify the notation we are going to use the following shortcuts:
° wIZ,TAt =7

e e AT — 4



o o~(-2-WAYT _

Using these we can rewrite M"™, M"™ ! and M" 2 as follows:

M"? = Z 1—ayx) E
k=0
n—1 _ n—1 = .2 k
Mt = ( )E" 1 4+) (1 zyk)E>
k=0
n—2
M" = (1—xE” LwﬂWA+ZXLﬂ%QEﬂ
k=0

Looking at M™ we get that
a=7(1-2z)

because there is no E® in M"~! and M" 2,
Comparing the E" ! coefficients in M™ and M™ ! we find that

bl-z)=1-2>=(1+2z)(1 —z) hence b=1+z
Finally comparing the E* coefficients for k¥ < n — 1 we find that
b(1 — 2%y) + (1 — zyg) = 1 — 23y,
or, substituting 1 + x in place of b:

(1+z)(1 — z%yi) + c(1 — zys)
=1- 2y, + 7 — 2y + c(1 — zyp)
=1-2%y

We see that we have to choose ¢ so that
z — 2?yp +c(1 — zy;) = 0

Selecting ¢ = —x does the trick.

In summary:
M" =y(1—2)E" + (1 +z)M" ! —gM"2

or, restoring the original values of v and z:

M" — szAt (1 B efAt/T) Ek + (1 + efAt/'r) Mnfl N efAt/’rMn72

1.3.3 The Z-transform Method

The Z-transform method lets us work around the Fourier Transform formulas. It returns a result
that is identical to the Single Current Method. But it is enlightening to see how this is done.
Our starting point is the formula:

2 2 2
w woT wT
Klw) =14+ —5——— P =142 __ P
—w? +iw/T iw w4 1/T

10



Now we are going to take the Z-transform of k, making use of the following Z-transform pairs table:

1 “ 1/At
1 1
iw 1—2z71
1 1
iw+1/7 “ 11—z le BT

The result is y 9
1 Wy T Wy T
k(z) = At + 1—21 11—z leAir

The relationship between D(w) and E(w) is

A

D(w) = k(w) B(w)
This translates into the convolution in the Z space:

D(z) = k(2)E(z)At

1 1
_ 2
= E(z) +w,TAt (1 s Tl zleAt/T) E(z)
_ —At/Ty —1
_ 2 (1-e )z
= E(2) +w,TAt (1 — (1 + e At/m)—1 ¢ e—At/Tz—2> E(2)

= E(2)+2'M(2)

where

2 (1— e 2U/7)
M(z) = wyrat 1 — (14 e AUT)z=1 4 g=At/T5-2 B(2)

This yields
M (z) (1 — (1 4e By 4 efAt/Tzﬂ) = ngAt (1 — eiAt/T) E(z)

or
M(z) = (1 + e_At/T) 2 M(z) — e M2 2 M (2) + wgrAt (1 — e_At/T> E(2)

Switching from the Z-domain to the time domain yields:
M" = (1 +6—At/7) M’n—l _ e—At/TMn—2 +w12)TAt (1 _ e—At/T) E
where I have made use of the pairing between the Z and time domains:
M"Y * o 2 FEM(2)

The resulting formula is exactly the same as the one we obtained previously using the discretized
convolution expression in the time domain.

11



1.3.4 The ADE Method

In this section I'm going to solve the equation:

~ w,

D(w) = B(w) +

using the auxiliary differential equation method. As above, we introduce:

R w2

M(w) = mE(w)
which yields '
—w?M (w) + %M(w) = wﬁE(w)
This time we convert this expression into an ordinary differential equation in the time-domain using
the following table:

2

dt?

W &~ i
dt

In effect: 2 L aMm
0 0 _ o

FTEER TR G
We can discretize this equation as follows:

d’M (t) o M" —2M™ ! 4 M2

dt? At?
M) ., M"- M2
dt 2At

So that after the substitution we obtain
M" — 2Mn—1 4+ Mn—2 N 1 M™— Mn—2
At2 T 2At
1 2 1
M (Ait + 5) = K;Mnil + (Alt — 5) M"? + w2 AtE™!

Dividing both sides by z; + % yields after some simplifications and rearrangements:

_ ,2rn—1
—wa

or:

2 14t wiTAt
M" = = Mnfl _ Z:g Man + Tp - Enfl
1+ 52 1+ 35 AL T 3

Now let us have a closer look at each term on the right hand side in the limit 6¢/7 — 0. First the
M"™ ! term:
2
4 At
5

n—1

-2
(o2

( —At/T) M1

12



Now the M" 2 term:

At
1_7 n—2
At

1‘+'§;

Q

_ 1_& 1_& M2
27 27

Q

I
/N

—_

I

& -
SN——

S

7

~ _efAt/TMan

And finally the E™ ! term:

szAt et
1
arta
At 1
R wf,TAt— A E" 1
T 1+ 5
At At
R woTAt— (1 - —) E"!
T 2T
At At?
_ 2 -1

= w2TAt (1 - (1 - g)) E"!
T

TAL (1 — e_At/T) E™ !

~ W

2
P
Now we combine all this together to get:

M" ~ (1 + e—At/T) M e—At/'rMn—Z + wIZJTAt (1 _ e—At/r) E"!

and this is again the same single current model expression we’ve seen before.
But it is important to remember that we get the agreement in the A¢/7 — 0 limit only. This
provides us with an additional condition on At.

1.3.5 Code Implementation

All three formulas, i.e., the double current, the single current and the ADE one, are implemented in
the code within subroutine d_to_e:

subroutine d_to_e (
imin, imax, jmin, jmax,
dx, dy, ex, ey, ix, iy, sx, sy,
x0, delta_x, yO, delta_y, t, delta_t,
omega_p, tau, model, xa, xb, ya, yb,

X

current_model, verbose)
implicit none

13



integer imin, imax, jmin, jmax

double precision
dx(imin:imax, jmin:jmax),
dy(imin:imax, jmin:jmax),
ex(imin:imax, jmin:jmax),
ey(imin:imax, jmin:jmax),
ix(imin:imax, jmin:jmax),
iy(imin:imax, jmin:jmax),
sx(imin:imax, jmin:jmax),
sy(imin:imax, jmin:jmax)

double precision

& x0, delta_x, yO, delta_y, t, delta_t, omega_p, tau,

& xa, xb, ya, yb

integer model, current_model, verbose

Frrrerreeee

where fields ix, iy, sx and sy play a double role, i.e., either of I, I, S;, Sy as used in the double
current model, or of S, S" !, of single current models.

A specific current model is selected by setting current_model to 1 (double current), 2 (single
current, ADE) or 3 (single current, exact formula).

If the selected current model is 1 then the computation looks as follows for D, :

coeff_1 = exp(-delta_t/tau)
coeff_2 = omega_p**2 * tau * delta_t

do j jmin, jmax
y =y0 + j * delta_y - delta_y_by_2
do i = imin, imax
x = x0 + 1 * delta_x
if (current_model .eq. 1) then
coeff_0 = distrib(x, y, local_model, xa, xb, ya, yb)
delta_s = coeff_1 * sx(i, j)
ex(i, j) = dx(i, j) - ix(i, j) + delta_s
delta_i = coeff_0 * coeff_2 * ex(i, j)
ix(i, j) = ix(i, j) + delta_i
sx(i, j) = delta_s + delta_i
else ...
end do
end do

where coeff_0 is a distribution function that is equal to 1 where metal is present, to 0 where it
is absent and to anything in between on the metal-vacuum border, according to the border model.
Thus, within the metal medium the computation evaluates:

AS = e ATgnt

B} = Dp-Iy'+AS=Df Iy ' 4e2Tgp!

2

Al = w,TAtEy

I = '+ AI=I)"" + wirAtE}

St o= AS+AI=e 27807 4+ W2TALED

in accordance with formulas derived in section 1.3.1.
The computation is similar for Dy with the only difference being the location of the D, field:

14



do j = jmin, jmax
y =y0 + j * delta_y
do i = imin, imax
x = x0 + 1 * delta_x - delta_x_by_2

For current model 2 (single current, ADE) the computation looks as follows:

else if (current_model .eq. 2) then
ex(i, j) = dx(i, j) - ix(d, J)
hold = 2.0/(1.0 + delta_t_by_2_tau) * ix(i, j)
- (1.0 - delta_t_by_2_tau)/(1.0 + delta_t_by_2_tau)
* sx(i, j)
+ distrib(x, y, local_model, xa, xb, ya, yb)
x coeff_2 / (tau_by_delta_t + 0.5) * ex(i, j)
sx(i, j) = ix(i, j)
ix(i, j) = hold
else ...

S

which, remembering that now ix stands for S?~! and sx stands for S?~2, translates into:

E; = Dy-S;7!

hold — Lsn—l_l—%? — wit At
1+ 2277 1+ 8t L4120

Sp? St

571« hold

in accordance with formulas derived in section 1.3.4.
Finally, for current model 3, which is a single-current exact formula model, the computation looks

as follows:

else if (current_model .eq. 3) then
ex(i, j) = dx(i, j) - ix(@d, J)
hold = (1.0 + coeff_1) * ix(i, j)
- coeff_1 * sx(i, j)
+ distrib(x, y, local_model, xa, xb, ya, yb)
& x coeff_2 * (1.0 - coeff_1) * ex(i, j)
sx(i, j) = ix(i, j)
ix(i, j) = hold
end if

& &

which translates to:

E} = Dp-Sp!
hold = (1 + eiAt/T) 5271 — (fAt/T,S';“2 + wf,TAt (1 — e*At/T> E}
sn=2 ¢ gn-l
St + hold

which maches formulas derived in section 1.3.2.
Observe that where distrib returns zero, no accumulation takes place and ix, iy, sx and sy all
remain zero and thus do not contribute to E. In this case we simply get that E = D, since in our

units ¢y = 1.

15



1.3.6 Summary

I have derived three formulas for extracting E" from D": the double current one, the single current
formula, which was derived twice — first using straightforward algebra and then using the Z transform,
and finally the single current formula, which was derived using the auxiliary differential equation
method. The latter agrees with the Z transform formula in the limit A¢/7 — 0. All three formulas
have the same memory cost, i.e., one has to store two additional auxiliary fields apart from D and
E, but the double current formula is the cheapest computationally, while it should be as accurate as
the Z-transform derived single current formula. The ADE single current formula is computationally
cheaper than the Z-transform formula, because it does not rely on exponentials, but it is less accurate.
The Z-transform or the double current formulas are accurate, with the only error creeping in through
the discretization of the convolution integrals in the time-domain.

A look at the Z-transform single current formula or at the double current formula shows us
that none should lead to destabilization of the computational procedure, because the exponens that
appears in both formulas is always damping. Physically this means that any signal that enters the
medium, a metal in this case, must be quickly attenuated. This will result in a reflection off the
medium and, if the medium is so shaped, possible focusing of the signal, which may result in a local
signal enhancement. But this is all there is to it.

If the frequency of the signal exceeds plasma frequency of the metal, the metal becomes trans-
parent to the signal. This, of course, is a good test for the program — clearly we should be able to
observe the same effect in simulations and. .. we do!

Experimental tests of all three formulas showed that there was no visible difference between them,
i.e., in practical runs with appropriately chosen At they returned identical results for all situations
tested and for all metal-border distribution models.

1.4 Medium Parameters in Natural Units

How to calculate medium parameters in natural units for use with subroutine d_to_e?

Medium parameters for metals are given in terms of two frequencies: the plasma frequency, wp,
and the attentuation frequency, 1/7. Because in all calculations we take ¢ = 1, time and space units
are the same. In turn, space units are determined by

1. Az =Ay =1}
2. Physical wavelength of a harmonic wave or width of the incident pulse, and
3. resolution required to resolve the wave or a pulse adequately.

In order to convert w, and T to natural units we simply have to find what these units are for a
given system defined by (1) through (3) above.

We begin by defining (3). This is best done by experimenting with waves of various length in
context of wave injection into and its subsequent extraction from the total field region, as discussed
in sections 3 and 3.1. It is stated there that the incident signal is calculated analytically on the
total field region boundary, but propagated numerically within the region. This results in a slight
mismatch, which produces a tiny wake within the scattered field region that accompanies the nu-
merically propagated wave. The better the resolution of the incident wave and the more accurate
the computation, the smaller is the wake in the scattered field region.

Although one can find statements in various learned books that one can resolve waves with just a
few points, these statements derive from the CFL stability criterion. But for us here it is not enough

! Although the programs developed within this project allow for varying Az and Ay independently, this is neither advised
nor has it been tested.
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that we are in a stable regime. We want to be accurate too. And so, through multiple experiments
I arrived at the resolution of 40, i.e., when the wavelength is 40, the parasitic wake in the scattered
field region is hardly visible.

The way we are going to figure out material parameters is going to derive from this assumption,
that a wavelength of a wave is 40 units of length. This is fixed. What is not fixed is the wavelength
itself.

Suppose we consider a neon laser light of A = 540.06 nm, then the unit of length is:

Az = Ay = 540.06 nm /40 =~ 13.5nm

The unit? of time, At, is then time in which a wave front passes the distance of 13.5nm, i.e.,

Az 13.5 x 1077 m

= = ~ 4.5 x 10717
¢ 2.997925 x 108 m/s % ®

At =

Now, consider silver, for which we have:

1/r = 57THz
fp = 1/T,=2000THz

Let us begin with 7:

_ 12 _ 12 8
T = 5T X 1012 /s = .0175438596 x 10“s = .0175438596 x 10 AtAt
0175438596 x 102 s
= At ~ I9AL
4.5 x 10~17s 389.9

In turn, we get the following for wy:

27 B 2 1 B 2nAt 1
T, T,/AtAt T, At
2x%x3.14%x45x1077 1

1
= — =fpx2x314x45x107"" —
) ; fpx2x3.14 x4.5x10 ;

(/Jp =

= 2,000 x 10'2 x 2 x 3.14 x 4.5 x 1077 1~ o0s652 =
At At

In summary:

A = 540.06 nm
Az = 13.5nm

At = 45x107 s
1

— 0.5652 —

Wy 0.565 A
r = 389.9At

In this case the incident wave is going to reflect from the silver boundary.

2Nota bene: in this section At is the unit of time, not the length of the time step. Similarly Az is the unit of length,
not the grid constant.
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In a similar way one can show that for the same material parameters, i.e., silver, if the incident
light is deep ultraviolet, e.g., A = 40 nm, then:

A = 40nm
Az = 1lnm
At = 3.336 x 107185
1
= 0.042 —
Wp 0.0 At

T = b5257.7T94 At

In this case the incident wave is going to pass through the silver medium with very little absorption.

The above illustrates the general strategy for computations adopted within this project. The
wave is resolved in some optimal way, e.g., it is spread over 40 level 0 grid points, and this is fixed,
regardless of the wavelength. For a given material we are now going to recalculate its material
parameters in natural units and use the results in computations. If we change the wavelength of
the incident light, the new system still resolves the wave on 40 level 0 grid points, but the material
parameters have to change even though we continue to work with the same material.

Because changing the wavelength of incident light changes the unit of length, we may have to
enlarge the grid and adjust the size of metal structures accordingly too. Their physical size is not
going to change, but their size expressed in the new units of length will be different.

2 PML ABCs

The TE equations in the frequency domain look as follows:

iwD; = 0yH,

iwDy = —0,H,
D, = ek,
D, = ek

iwH, = 0,E, —0,B,

In order to absorb incident signal within a thin boundary layer we introduce three functions of
position, 3., By and «,, inserting them in the frequency domain equations as follows:

1wDy By (x)ﬁy (y) = oyH,
wDyBy(2)Bs(y) = —0.H,
D, = ¢eFE,
D, = ek

iwH,a,(z)a,(y) = 0yEy — 0,Ey
Functions S, By and a, form PML ABCs in TE if [11] [13]

IBw = 1/,831

az:ﬁy

Without much loss in generality we can assume the following form for o, = 8, = 1/, [12] [13]:

a, = 1—I—%
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1

:81 = 1+%
g

= 14+ —
lBy w

where o is a function of depth into the PML layer from within the computational domain. It is equal
0 within the computational domain.
With these in place Maxwell equations in the frequency domain look as follows:

iwa<l+%> = (1+%>8H

iwDy (1+%) = (1+%)6H

D, = ¢E,
Dy = eEy
i, (1+M) (1+@) _ 0,E, - 0,5,
iw iw

Converting from the frequency to the time domain yields

t
8,0y + o(y)Dy = O,H, + o(x) / 8, H, dt'
0

t
0Dy +o(x)Dy, = —0,H,—o(y) / O, H,dt'
0
D, = ¢€F,
D, = ek,

t
OH, + o(2)H, +o()H, = 0,Bs — 0,5, — o(x)oly) / H,dt
0

The product of two sigmas, o(z)o(y), vanishes everywhere with the exception of the corners, where
both o(x) and o(y) are different from zero. Furthermore, for an oscillating H, the integral f(f H,dt
is going to be zero on average. Consequently, I am going to neglect this term altogether in these
computations, so that the last equation simplifies to:

OH,+o(x)H, +o(y)H, = 0yEy — 0, Ey

In leap-frog discretization of these time-domain equations, we evaluate non-differentiated terms
on the left hand side at the same time slice as the derivatives and as the right hand side. This results
in the replacement of, e.g., D? with (D? + D?~') /2 — with the following effect:

noo__ n— 1- U(y)At/2 At U(CC)At
Di = D A T T omAle (asz T Z?Bsz)
n - 1 O’(:E)At/z At o(y)At
no no1l— 0(:1:)At/2 —o(y)At/2 At
Hy = H 14+ o(x)At/2+o(y)At/2 1+ o(z)At/2 + o(y)At/2 (0y By — OrEy)

The last equation, for H}' can be rewritten as

() (o) () () -0
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within the O(At)? accuracy.
Following [13] I replace o(z)At/2 with

o(z)At (o) = 1 (depth into the PML layer' ®
2 BRA A 3 \ width of the PML layer

This implies that when carrying out computations within the PML layer we have to evaluate one of
the following three cases:

1. f(z)
2. 1/(1 + f(z))
3. (L= f(=)/(Q+ f(z))

The following Fortran function defined on update.f implements this computation:

function pml(x, xmin, x1, x2, xmax, mode)
implicit none

double precision pml

double precision x, xmin, x1, x2, xmax
integer mode

where z is the current position, i, is the left edge of the computational domain, xy,x is the
right edge of the computational domain, z; is where the PML layer begins on the left hand side
(Zmin < Z1), T2 is where the PML layer begins on the right hand side (22 < Zmax and z; < z9) and
mode is an integer, 1, 2, or 3, that specifies whether we want to evaluate f(z) (1), 1/(1 + f(z)) (2)
or (1—f(z))/(1+ f(x)) (3)- If z1 < x < x2 the function returns 0 for mode 1 or 1 for modes 2 and
3 right away, which makes it relatively inexpensive to call outside of the PML region.

Of course, this function can be also called with y in place of .

The computation then unfolds as follows. For H, we get:

dt_by_dy = delta_t / delta_y
dt_by_dx = delta_t / delta_x

do j = jmin + 1, jmax - 1
y =y0 + j * delta_y
do i = imin + 1, imax - 1
x = x0 + i *x delta_x
hz(i, j) =

& pml(x, xmin, x1, x2, xmax, 3)
& * pml(y, ymin, y1, y2, ymax, 3)
& * hz(i, j)
& + pml(x, xmin, x1, x2, xmax, 2)
& x pml(y, ymin, y1, y2, ymax, 2)
& x (- (ey(i + 1, j) - ey(i, j)) * dt_by_dx
& + (ex(i, j + 1) - ex(i, j)) * dt_by_dy)
end do
end do
For D,:
do j = jmin + 1, jmax - 1

y = y0 + j * delta_y - delta_y / 2
do i = imin + 1, imax - 1
x = x0 + i * delta_x
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delta_hz = hz(i, j) - hz(i, j - 1)
idx(i, j ) = idx(i, j)
& + 2 *x pml(x, xmin, x1, x2, xmax, 1) * delta_hz
dx(i, j) =
& pml(y, ymin, y1, y2, ymax, 3) * dx(i, j)
& + pml(y, ymin, y1, y2, ymax, 2)
& * (delta_hz + idx(i, j)) * dt_by_dy
end do
end do

where idx is 292 529, H,Ay. When (delta_hz + idx(i, j)) is multiplied by At/Ay in the
last step, the correct formula is obtained both for V x H and for the accumulation term.
Finally, for D,:

do j = jmin + 1, jmax - 1
y =y0 + j * delta_y
do i = imin + 1, imax - 1
x = x0 + i * delta_x - delta_x / 2
delta_hz = hz(i, j) - hz(i - 1, j)
idy(i, j) = idy(i, j)

& + 2 * pml(y, ymin, y1, y2, ymax, 1) * delta_hz
dy(i, j) =
& pml(x, xmin, x1, x2, xmax, 3) * dy(i, j)
& - pml(x, xmin, x1, x2, xmax, 2)
& *x (delta_hz + idy(i, j)) * dt_by_dx
end do
end do

where idy is 22 5299, H,Az. When (delta_hz + idy(i, j)) is multiplied by At/Az in the
last step, the correct formul is obtained both for V x H and for the accumulation term.

Observe that z and y correspond to the positions in the grid at which a field is defined. In this
code H, is cell-centered, whereas D, and D, are staggered.

The above implementations may not be the most efficient in terms of speed of execution, but at
this stage I believe code clarity and code correctness are more important?.

This computation, implemented by subroutines update_d_pml and update_h_pml, is invoked
only within level 0, because only level 0 fields reach beyond the total field region and towards the
PML boundaries. Fields within higher levels call simpler subroutines update_h and update_d, which
implement plain Maxwell equations without PML ABC terms.

3 Injection and Extraction of the Incident Field

The incident field is injected into the total field region and then extracted from it by the means of
tweaking appropriate field derivatives on the border of the region. An analytical formula is used to
propagate the field along the boundary, whereas propagation of the field within the total field region
is numerical. This has the advantage of letting us observe the effects of numerical dispertion and
test the accuracy of the solution method — covering also the accuracy of multi-level computations.
On the other hand this has a disadvantage as well, because due to numerical dispersion analytically

31 do not claim the code to be correct, but clear coding makes it easier to implement correct computation in the first
place and then to spot possible errors if any have been made.
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Figure 1: Definition of total and scattered field regions laid out on top of the staggered grid. The total
field region is within the rectangle defined by (i,, j.) and (4, j5). Everything outside this rectangle is the
scattered field region. Magnetic field H, is cell centered (black dots). Field D, is side-centered to the
left of H, and field D, is side-centered below H,, i.e., H,(i,7) = H,(x¢ + iAx,yo + jAy), D,(3,5) =
Dy(zo + 1Az, yo + jAy — Ay/2) and Dy (i, j) = Dy(xo + iAx — Az /2, y0 + jAy).

and numerically propagated pulses diverge eventually, which results in a small unsubtracted signal
within the scattered field region, especially towards the end of pulse or wave propagation within
the total field region. But this signal is absorbed by PML ABCs, and does not enter the total field
region. It can be minimized by resolving the wave better and by injecting the wave into the total
field region gradually.

Figure 1 illustrates the total/scattered field regions, with the total field region enclosed within a
rectangle defined by (i4, j,) and (ip, js)-

Maxwell equations

8tD = VxH
8tH = —-VXE

discretize in the TE mode as follows:

HP~'(6,5) — HP'(6,5 — 1)

D3(i.j) = Dy~'(i.j) + Ay At
gy HETNg) - HPTNi—1,9)
. 1 Y 7
Dy(i,j) = Dy '(i,) — == A At
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2GS = HNg) - (BT EGD)  BGI ) DB oy

where D" = D(ty + nAt) and H" = H (ty + nAt + At/2).
Now consider update of Dy (i4, j) for jo < j < jp:

Hg_l(iaaj) B Hzn_l(ia - 1a.7)
Az

Dy (ia,j) = Dy~ (ia; 5) - At

Here H?"'(iq, ) is inside the total field region but D}(iq,j) and H}!(iq — 1,j) are outside. The
inside value of H?~!(iy, j) has the incident field component, which we must subtract from it in order
for the update to make sense. But this subtraction can be carried out afterwards by a separate
subroutine, which will have to carry out:

D} (i, j) + Dit(ia, ) + HY (ig, j,n — 1) At/ Az

for all j € [ja, o).
Similarly for Dy (i, + 1, 5) for all j, < j < jp:

Hg_l(ib + ]-7.7) B Hg_l(ibaj)

A
Azx ¢

D} (ip+1,5) = Dp " (ip + 1,4) —

Here D (ip+1,5) and H ' (iy + 1, 5) are outside, but H ' (iy, j) is inside the total field region and
so it carries the incident field component, which we must subtract from it in order for the update to
be meaningful. This can be done again by a separate subroutine, which will have to carry out:

Dy (ip+1,5) < Dyp(ip + 1,5) — HP" (i, j,n — 1) At/ Az

The Fortran subroutine that makes these corrections is called inject_d. It is a somewhat con-
voluted subroutine, but what makes it so is not the computation itself, but figuring out whether it
needs to be done for a given range of < and j values at all, since the subroutine is going to be invoked
on a plaquette, i.e., on some subset of the computational domain, in a multi-processor version of the

code and this includes the Chombo formulation, even if run on a single processor.
In any case, this is what the relevant portion of the code looks like:

if ((imin .1t. ia) .and. (ia .1lt. imax)) then
do j = jfrom, jto

y = y0 + j * delta_y
hz_incident = pulse(y, t - delta_t * 0.5,
& t0, sigma, mode)
dy(ia, j) = dy(ia, j) + hz_incident * dt_by_dx
end do
end if

if ((imin .1t. ib + 1) .and. (ib + 1 .1lt. imax)) then
do j = jfrom, jto
y = y0 + j * delta_y
hz_incident = pulse(y, t - delta_t * 0.5,
& t0, sigma, mode)
dy(ib + 1, j) = dy(ib + 1, j) - hz_incident * dt_by_dx
end do
end if
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Now, let us consider, in a similar way, corrections needed to update Dy (i, j,) and Dy (i, 55 + 1)
for all i € [iq,1%p). We begin with D,(3, j,). Here we have:
H} M6, a) — Hp 7' (4,5a — 1)
Ay

Dg(iaja) :D;L_l(iaja)—'— At

where D?(i,j,) and H? 1(i,j, — 1) are outside the total field region, but H? 1(i, j,) is inside it.
Consequently, we will have to subract the incident field contribution from H? (4, j,) in evaluating
D3 (i, ja) for i € [ig,1p). The resulting formula is:

D(i, ja) < D4, ja) — HN (i, o, m — 1) At/ Ay
and for j = j, + 1:

HP (i, 55 +1) — HY (3, jp)

DR(i, o +1) = Dy~ (i, jp +1) + = Ay At

where this time it is H?~1(4, ) that is inside the total field region. So the corrective formula is going
to be: o
D (i, b + 1) = D(isjo + 1) + HF i, jo, n — 1) At/ Ay

Here is how these two corrections are coded within inject_d:

if ((jmin .1t. ja) .and. (ja .lt. jmax)) then
ya = y0 + ja * delta_y
hz_incident = pulse(ya, t - delta_t * 0.5,
& t0, sigma, mode)
do i = ifrom, ito
dx(i, ja) = dx(i, ja) - hz_incident * dt_by_dy
end do
end if
if ((jmin .1t. jb + 1) .and. (jb + 1 .1lt. jmax)) then
yb = yO + jb * delta_y
hz_incident = pulse(yb, t - delta_t *x 0.5,
& t0, sigma, mode)
do i = ifrom, ito
dx(i, jb + 1) = dx(i, jb + 1) + hz_incident * dt_by_dy
end do
end if

Now, let us get to the most complex correction, namely the one pertaining to H,. Because:

¥ Loy (B 1)~ ERG.)  BRG,G+1) - BR(i,j
HG,g) = 1) — (P - BRI )

the correction in this case should be carried out both on 2 = i, and 7 = 4; as well as on j = j, and
j = jp. But if the incident signal is a plane wave or a plane pulse that propagates in the y direction,
then the y component of the incident field must be zero. Consequently, there are not going to be any
corrections to H, on i = i, and i = 1.

But we are going to have corrections on j = j, and then on j = j,. Neglecting contribution from
E, we get on j = j,:

H}(iyja) = H} (6, 4a) + (Bp (i, jo + 1) — ER(i, ja)) At/ Ay
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Here H7 (i, j,) and E7(i,j. + 1) are both inside the total field region and only E7(i,7,) is outside.
We must add this time the incident field to EZ (4, j,) in order for this update to be meaningful. This
is how we inject the signal into the total field region. The resulting correction is therefore going to
be:

H (i, ja) 4 HZ (i, o) — By ™ (i, ja, n) At/ Ay

On the other hand, at j = j:
H (i, o) = H7 (3, 3b) + (B3 (i, 3o + 1) — g (i, 5b)) At/Ay

Here both H7(i,j,) and E7 (3, jp) are inside the total field region, but E7 (i, j, + 1) is outside. So we
must again add the incident signal to E7(%,, + 1) in order for the update to be meaningful. And
this is how we eztract the incident signal from the total field region.

The resulting correction is:

H3 (i, ) = H (5, 5o) + B9 (i, + 1,m) At/ Ay
These corrections are implemented within subroutine inject_h as follows:

if ((jmin .1lt. ja) .and. (ja .1t. jmax)) then
ya = yO + ja * delta_y - delta_y * 0.5
ex_incident = - pulse(ya, t - delta_t * 0.5,
& t0, sigma, mode)
do i = ifrom, ito
hz(i, ja) = hz(i, ja) - ex_incident * dt_by_dy
end do
end if
if ((jmin .1t. jb) .and. (jb .1lt. jmax)) then
yb = yO + jb * delta_y + delta_y * 0.5
ex_incident = - pulse(yb, t - delta_t * 0.5,
& t0, sigma, mode)
do i = ifrom, ito
hz(i, jb) = hz(i, jb) + ex_incident * dt_by_dy
end do
end if

3.1 Incident Field Models

The incident field is calculated using an analytical formula.
First, let us observe that in the TE mode for an injection of a plane pulse or wave in the y
direction we only have H, and E, (assume vacuum, so that D = E. Therefore:

OB, = 0,H,
OH, = 0,E,

Substituting H, = f(y — t + ty) (remember that ¢ = 1) we find

Ofly—t+ty) = f
Wfly—t+t) = —f

Consequently, we must have that

which is why we use:
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hz_incident = pulse(ya, t - delta_t * 0.5,
& t0, sigma, mode)

in inject_d but

ex_incident = - pulse(ya, t - delta_t * 0.5,
& t0, sigma, mode)

in inject_h.
As to the shape of the pulse, i.e., function f we provide two models.
Model 1 corresponds to a simple Gaussian pulse:

2
f(y,t) =exp (—M)

202

This is represented in the code of function pulse as follows:

if (mode .eq. 1) then
pulse
& =exp (- (y - (£ - t0)) »x 2 / (2 * sigma ** 2))
else ...

Model 2 corresponds to a slowly ramped harmonic wave:

Fly:1) = 5 (tamh (alt ~ 1o — 9)) + 1) cos (2n(y — /o)

where o = 0.05 and is hard-wired into the Fortran code. The ramped harmonic wave is implemented
in the code of function pulse as follows:

else if (mode .eq. 2) then
ramp = 0.5 * (tanh(alpha * (t - t0 - y)) + 1.0)
pulse
& = ramp * cos(2.0 * pi * (y - t) / sigma)
end if

It is clear from the above that the same parameter, o, is used either as the half-width of the pulse
or as the wavelength of the harmonic wave, depending on the mode. The parameter ¢y represents a
delay. It shifts the pulse or the ramp deep into negative y (how deep is determined by tj) so that
the pulse can be turned on adiabatically without triggering unphysical effects within the total field
region.

4 Medium Distributions

Section 1.3.5, page 13, introduced function distrib, which is zero in the absence of the metal
medium, one wherever the medium is present, and something in between on the medium boundary.

The boundary itself can be made sharp or fuzzy — the program provides various models here.
The interface of function distrib is as follows:
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function distrib (x, y, model, xa, xb, ya, yb)
implicit none

double precision distrib

double precision x, y

integer model

double precision xa, xb, ya, yb

The body of function distrib is basically a large if statement:

if ((x .1t. xa) .or. (xb .1t. x)
& .or. (y .1t. ya) .or. (yb .1lt. y)) then
distrib = 0.0DO
else
. blah blah blah ...
end if

This lets us surround the region where metal particles are present with a rectangle and return
immediately with distrib = 0 outside of it.
Inside the rectangle, the following models are implemented:

0: distrib = 0 everywhere. This model is useful for testing injection, extraction and the propaga-
tion of the incident signal itself.

1 within a rectangle [30,70] x [40,70], and O elsewhere.

1 within a circle the centre of which is at (50,50) and radius 15.0, and 0 elsewhere.

1: distrib

2: distrib

3: distrib = 1 within a circle the centre of which is at (50, 50) and radius 14.5, and 0 outside of the
circle with the same centre, but radius of 15.5. In between the two radii, the value of distrib
varies linearly with distance between 0 and 1 according to the formula:

—(l —r—Ar/2)/Ar

where [ is the distance from the centre of the circle, r = 15.0 and Ar = 1.
4: distrib varies inside the rectangle defined by z,, 3y, y, and y; according to the formula:
1
3 [tanh (a(r — 1)) + 1]

where [ is the distance from the centre of the circle, (50,50), r = 15 and @ = 1 is a smoothing
parameter.

5: Same as model 4 with o = 0.5.
6: Same as model 4 with a = 2.0.

9: Same as model 4 with a = 4.0 — this model was introduced specially for multilevel runs, because
a = 4.0 makes the gradient very steep.

7: distribis 1 within one of two circles: circle((37.5,50.5),7.5) and circle((62.5, 50.5), 7.5), and zero
elsewhere.

8: distrib is given by the following tanh formula:
1 1
3 [tanh (a(r1 — 1)) + 1] + 3 [tanh (a(re —l2)) + 1]

where 71 = 19 = 7.5, [1 is the distance from (37.5,50.5) and I is the distance from (62.5, 50.5)
and o = 1.
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Both Fortran and Chombo programs were then tested against various models. In these tests I
found that the models in which the metal boundary was diffused over a certain width, i.e., models 3,
4,5, 6,9 and 8 did not perform well. The thick skin of these models trapped electromagnetic field,
which then continued to vibrate within the skin long after the incident pulse has passed through.
When the incident signal was a wave the same effect resulted in continued visible ringing within the
metal skin. The trick worked quite well in the initial stages of the encounter between the signal and
the metal surface and did prevent spiking to some extent.

In multi-level runs, the most effective strategy to prevent the spikes was to resort to models
with sharply defined boundaries, i.e., models 1, 2 and 7 and to surround the boundary itself with
permanently defined fine mesh — this on top of the dynamically constructed fine mesh that travelled
with the incident signal.

5 Fortran Mainlines

The Fortran program, metal.f, is a straightforward application of FDTD to a problem of an incident
electromagnetic signal scattering on a metal object. Because it is an F77 program, the size of the
grid must be hardwired into the code (this wouldn’t be the case in F90 and later Fortrans, but there
is no GNU F90 yet, so all this development is done with F77). Other parameters though, especially
all material and IO specifications, are read from Fortran namelists at the beginning of the program.

After a simple initialization of its basic data structures (all fields are initialized to zero), time-
stepping begins and the time stepping loop looks basically as follows:

do step = 1, number_of_steps
t =t - delta_t / 2
call update_d_pml
t =t + delta_t
call inject_d
call d_to_e
t =t - delta_t / 2
call update_h_pml
t =t + delta_t
call inject_h
if (mod (step, stride * image_frequency) .eq. 0) then
call dump_data
call extrema
end if
end do

I have removed the very long argument lists from this listing for clarity. An important thing to
observe is that time is handled outside of update functions. In this case we would be free to do
otherwise, but in case of Chombo mainlines time mus/ be handled externally — and so Fortran
handles it this way too.

Because there is only one level in the Fortran computation, the update functions, both update_d
and update_h are in their PML versions. All problem specific physics, i.e., the type of the material
and its distribution within the computational domain is handled by d_to_e. This is the only routine a
user of the program has to contribute. All the rest, i.e., system time-stepping, PMLs, signal injection
and extraction and IO are handled by other subroutines, which are left unchanged.
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5.1 Fortran Input

The input to the Fortran program is provided by the means of namelists. There are 6 namelists in
the program at present:

chat Specify verbosity.

total region Specify the geometry of the total field region within the computational domain.
pml_boundary Specify the geometry of the PML boundary.

pulse Specify the character of the incident signal: pulse/wave, what length, what width.
medium Specify the medium and the current model to be used in the computation.

iterations Specify number of iterations, the length of the time step and how often should the images
be dumped.

Here is an example of the namelist file:

&chat verbose=1 /
&total_region ia=20, ib=80, ja=20, jb=80 /
&pml_boundary no_pml=0, x1=10.0, x2=90.0, y1=10.0, y2=90.0 /
&pulse mode=1, t0=20.0, sigma=10.0 /
&medium no_metal=0, model=7, current_model=1,
omega_p=0.566, tau=389.604, margin=2.0 /
&iterations number_of_steps=7680, stride=32, image_frequency=2 /

In this case the verbosity parameter is set to 1. It can be also zero, in which case the program runs
silently, or something larger than 1, in which case the program will chat insanely.

The total field region is specified by providing values for 44, %, j, and j5 — see section 3.

The width of the PML boundary is specified by providing x1, 2, y1 and yo. See section 2. It is
also possible to switch PMLs off altogether by specifying no_pml=1.

The pulse is specified by its mode number (i.e., a pulse (1), or a wave (2)), delay, t0, and either
a pulse half-width or the full wavelength, sigma.

Then we have the medium specification. We can switch medium off altogether by defining
no_metal=1 or by defining model=0. The meaning of the distribution model is described in sec-
tion 4 and the meaning of the current_model is discussed in section 1.3.5. The meaning omega_p
and tau and how they should be evaluated is discussed in section 1.4. Finally, margin specifies a
margin within the total field region within which distrib is going to be set to zero automatically,
cf. 4 and the discussion of z,, Ty, ¥y, and yp. The Chombo program lets the user specify these directly,
whereas in the Fortran program they are specified by providing margin.

Finally we have the specification of the iterations themselves. The total number of steps, the
stride. The stride is a parameter, which divides At = Az = 1 by ... stride in order to
generate the length of the time step used in the computation. For example, if we want the wave
front to move through Az = 1 in 16 time steps, then we should set stride=16. The last parame-
ter, image_frequency, specifies how often do we dump the images. The images are dumped every
stride * image_frequency time steps.

When the program is run the namelist file must be read into it as follows:

$ metal < input
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6 Chombo Mainlines

The Chombo program is split into several files. The mainlines itself, metal_Ch.cpp, is a relatively
small file that contains just main. The program uses the Chombo ParmParse class to collect data
from the input file and to make it available to any other C++ class or function within the code that

needs it.
The basic data structure within the Chombo program is level defined on metal_Ch.h:

struct level {
// Tagging specifications

Real diff_threshold, value_threshold;
IntVectSet tag_set;

// Geometry of this level and its distribution amongst the CPUs

int imin, imax, jmin, jmax, tag_margin;

Real x0, yO, delta_x, delta_y, xmin, xmax, ymin, ymax;
Box domain;

Vector<Box> vector_of_boxes;

Vector<int> vector_of_processes;

// Time slices

Real time_e, time_h, time_e_old, time_h_old;
Real delta_t;

// Fields associated with this level.

LevelData<FArrayBox> D, E, I, S, H, ID, D_old, E_old, I_old, S_old, H_old;

// ID is used at level O only (for PMLs), so there is no need for ID_old

// Minima and maxima

Vector<Real> D_max, D_min, E_max, E_min, H_max, H_min;
1
All data structures and auxiliary parameters that pertain to a given Chombo/AMR level are definied
within 1level. Various vector and scalar fields are objects of class LevelData. These objects are really
only place-holders and they have to be specially instantiated and sized in order to become real fields
(or matrices). Consequently, when a new level is created, it is really a very small object with lots

of dangling pointers. One has to be aware of it and one has to call new or appropriate Chombo

functions in order to build the relevant data objects.
Function main defines a vector of levels:

Vector< levelx* > levels;

which is initially empty, and then calls:

build_level(levels);
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which builds level 0 with all its arrays initialized to zeros. In the process steering input is read from

the Chombo input file using ParmParse. More about it below.
Now we are ready to enter the iteration loop:

for (int label=0, count = 0; count < number_of_steps_0; count++) {

int time_to_regrid = !((count + 1) % stride_0);
int time_to_dump_data = !((count + 1) % (stride_0 * image_frequency_0));

advance_e(levels);
advance_h(levels);

if (time_to_regrid) regrid(levels);
if (time_to_dump_data) {
analyze_levels(levels);
dump_data(levels, ++label);
}
}

This looks, I hope, very nice and clean. Of course, there is plenty of dirt swept under the carpet
here. What makes it possible is the overloading of most of the functions used by the program, the
huge capacity of vector of levels to represent the whole multi-level system, and the ability to pass
the remaining parameters around using ParmParse. The latter is somewhat similar to the Fortran
common statement.

The algorithm used to time-step the system and to build higher levels is discussed in detail in
[9]. In this part of the project I have merely cleaned the code, niced it up, made it more flexible and
more modular, and restructured it for TE and metal. And so, the general idea is that as Az = Ay
gets halved on moving from level n to level n + 1, the corresponding time step At gets divided by
3 instead. This way strict leapfrog synchronization between all levels is maintained. The levels are

built and advanced recursively.
Where I had separate functions for level 0 and for higher levels in [9], here I merged these functions
into a single overloaded function. And so

build_level{levels}

builds level 0, but

build_level{levels, n}

builds level n. In both cases, if there are reasons enough to build higher levels, the function will

continue calling itself recursively, until all levels have been constructed.
Similarly

advance_e{levels}

advances level 0, whereas

advance_e{levels, n}
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advances level n. Again, in both cases, if there are higher levels that need to be advanced in synchrony,
the function will call itself and its partner, advance_h, recursively and in correct order until all levels
have been advanced.

Dolly Parton remarked about her own appearance once saying “it takes a lot of money to look
this cheap”. I couldn’t agree with her on this point, because to me she will always look wonderful,
but I do share the sentiment: “it takes a lot of coding to make the program look this terse.”

6.1 Chombo Input

The chombo input can be divided into separate units similar to Fortran namelists, but at this stage
I chose to lump all input parameters into a single list that is divided semantically rather than
structurally. And so, we have the following groups of parameters on the metal_Ch.input file:

Chat group How much diagnostic output do you want. There are two verbosity parameters here:
one is for Chombo, the other one for Fortran. Activating Fortran verbosity should be done
with great caution, because the output is going to be extremely copious on account of Fortran
subroutines being called in parallel by multiple Chombo/MPI processes.

Level 0 geometry group Specifies the geometry of the level 0 group.

Level 0 iteration group Specifies how level 0 should be iterated, similar to the iterations namelist
in the Fortran program.

PML group specifies the width of the PML boundary.

Signal injection group What kind of a signal should be injected, and what should the geometry
of the total field region be.

Medium group The geometry of the cut-off region, medium parameters, current model, medium
distribution model.

Levels group How many levels, how should they be constructed.

Output style group Activate Gnuplot, HDF5 output. Which fields to output?
Here is an example of the metal_Ch.input file:

#

# Chat?

#

chombo_verbose = 0
fortran_verbose = 0

#

# Level 0 geometry group
#

nx_0 = 100

ny_0 = 100

nbx_0 = 4

x0_0 = 0.0

y0_0 = 0.0

delta_x_0 = 1.0
delta_y_0 = 1.0

#

# Level 0 iteration group
#

time_0 = 0.0

stride_0 = 16
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image_frequency_0 = 2
number_of_steps_0 = 3200
#

# PML group

#

xpml_lo = 10.0

xpml_hi = 90.0
ypml_lo = 10.0

ypml_hi = 90.0

#

# Signal injection group
#

ia = 20

ib = 80

ja =20

jb = 80

pulse_mode = 1

t0 = 20.0

sigma = 10.0

#

# Medium group

#

omega_p = 0.566

tau = 389.604
distribution_model = 2

current_model = 1

xa = 30.0

xb = 70.0

ya = 30.0

yb = 70.0

#

# Levels group
#

max_number_of_levels = 3
tag_on_diffs = 1

tag_on_values = 1
tag_on_location = 1

tag_margins = 3 5 7
diff_thresholds = 0.045 0.06 0.08
value_thresholds = 0.25 0.5 0.9

xc_tag = 50.0

yc_tag = 50.0
radius_tag = 15.0
half_width_tag = 7.0
#

# Output style group
#

gnuplot_output = 1
hdf5_output = 0
output_Dx =
output_Dy
output_Ex =
output_Ey
output_Hz

|
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output_tags = 0
output_boxes = 0

In this case the program is going to run silently as both Chombo and Fortran chatting are disabled.

The level 0 grid is going to be 100 x 100 divided into 4 x 4 boxes, each box to be assigned to a
different CPU if possible. The beginning of the coordinate system for this level is (0,0) and the grid
constants are Az =1 and Ay = 1.

The iteration begins with ¢ = 0. We are going to carry out 3,200 level 0 time steps and 16 time
steps will be required for the wave front to cross a distance of Az = 1. Images (of all levels) will be
dumped every 16 x 2 = 32 level 0 time steps.

The PML boundary is going to be 10 cells thick all around the computational domain.

The total field region is defined within the [20, 80] x [20, 80] rectangle. We are going to inject
a pulse of half-width ¢ = 10 and with time delay ¢, = 20. The medium is going to be silver
with 7 = 389.6 and wg = 0.566 in natural units for this problem. We are going to have a single
cylinder with sharp boundaries (distribution_model = 2) and we are going to use the double-
current model (current_model = 1). The medium cut-off boundary is defined by z, = 30,z = 70
and y, = 30, y, = 70.

We are going to have up to 3 AMR levels throughout the computation. We are going to tag cells
for splitting if both values and differences of values in these cells exceed certain limits, specified by
diff_thresholds and value_threshold vectors. What these threshold values have to be must be
discovered by experimentation. The tagging is going to be done within progressively narrower regions
within the total field region. The tag_margin vector tells us that level 1 is going to be 3 cells away
from the total field boundary, and level 2 is going to be 5 cells away from the total field boundary.

We are also going to tag cells within a ring of width 2 * half_width_tagand radius radius_tag,
centered on (xc_tag, yc_tag) regardless of field values in them.

In this case we are only going to generate Gnuplot output for H,. HDF5 output is disabled as
are outputs for other fields.

7 Chombo Output

The output of the Chombo program is in the form of data files. These files can be generated either
for display with Gnuplot, in which case they are going to be rather voluminous, or for display with
Chombovis, in which case the output is in the HDF5 format.

7.1 HDF5 Output

HDFS5 files contain all fields specified in the metal_Ch.input file, i.e., if we activate, say:

output_Ex = 1
output_Ey = 1
output_Hz = 1

E,, E, and H, for a given time slice for all levels currently active will be output on a single HDF5
file called, e.g., fields_027.hdf5. This file will also contain the gridding information (boxes) for all
levels. The output is synchronized on the E line and the H fields are advanced by half a time step
for each level. This means that E fields for all levels are dumped at exactly the same time, but H
fields are dumped for slightly differing times. I would have to time-interpolate these fields in order
to achieve the synchronization.
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7.2 Gnuplot Output

If Gnuplot output is activated, each field and each level is dumped on a separate file. And so we are
going to have files such as:

Ex_0_027.dat
Ex_1_027.dat
Ex_2_027.dat
Ey_0_027.dat
Ey_1_027.dat
Ey_2_027.dat
Hz_0_027.dat
Hz_1_027.dat
Hz_2_027.dat

Everyone of these files contains a large header with a lot of information. For example a header for
Ex_1_027.dat may look as follows:

# program: metal_Ch, function: write_gnuplot_data

# header:

# program author: Zdzislaw (Gustav) Meglicki, Indiana University
# %Id: io_Ch.cpp,v 1.16 2004/11/15 16:02:25 gustav Exp %
# %Id: metal_Ch.h,v 1.20 2004/11/15 21:11:22 gustav Exp %
# system kernel: Linux.2.4.26.#1 SMP Wed Apr 21 09:09:56 CDT 2004
# machine: i686

# node: jlogini

# time of dump: Thu Nov 18 11:58:29 2004

# data for: Ex

# level: 1

# label: 27

# time_e: 54.000000

# time_h: 54.010417

# delta_t: 0.020833

# delta_t_0: 0.062500

# xmin: 21.250000

# xmin_0O: -1.000000

# Xmax: 77.750000

# xmax_0: 100.000000

# ymin: 21.250000

# ymin_O: -1.000000

# ymax: 71.750000

# ymax_0: 100.000000

# delta_x: 0.500000

# delta_x_0O: 1.000000

# delta_y: 0.500000

# delta_y_O: 1.000000

# data minimum: -1.010016

# global minimum: -1.010112

# data maximum: 0.000190

# global maximum: 0.000190

# data:

This information can be used to assemble Gnuplot *.dat files for a given field and for a given level
into animation. This used to be done by the Chombo program itself, but now I decided to implement

35



this function as an external shell script. This simplifies the Chombo program itself somewhat. The
script is called

write_plot_file.sh

and it should be invoked as follows:

$ write_plot_file.sh Hz 1 > Hz_1.plt

The animation can be then displayed by running

$ gnuplot Hz_1.plt

I continue to support the Gnuplot output mode in the program, because I found it invaluable in
debugging and in testing. The Chombovis colour maps look pretty, but they are not as informative
as the 3-D surface displays produced with Gnuplot.

8 Tests and Experiments

The program has been run through a fairly large number of tests. These still don’t test it against
known analytically solvable examples, which is the best test of all, but they test it for consistency
against itself, they test Fortran versus Chombo, in case of plane waves and pulses against analytical
solutions, and they test various code configurations and models just to check which work best.

8.1 Plane Wave/Pulse propagation

The first test is a plane pulse test: does it propagate through the total field region correctly and
does it get correctly injected and removed on the total field region boundary? This is an easy test
to run, because if anything goes wrong, there is a visible large signal in the scattered field region. It
is also a good test for multi-level runs. If there is anything wrong with the way data is propagated

at higher levels, we should see a clear deformation of the wave front.
This test is selected on setting:

pulse_mode = 1

t0 = 20.0

sigma = 10.0
distribution_model = 0
max_number_of_levels = 1
gnuplot_output = 1
output_Hz = 1

Here we are going to inject a pulse of ¢ = 10 into the total field region. There is not going to be any
medium within the computational domain other than vacuum (distribution_model=0). At this

stage we restrict the computation to a single level only.
For a 3-level computation we would change max_number_of_levels to 3 and we would add
specifications for how to tag cells, e.g.,
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max_number_of_levels = 3
tag_on_diffs = 0
tag_on_values = 1
tag_on_location =
tag_margins = 3 5
value_thresholds = 0.5 0.8 0.9

0
7

Figure 2 illustrates propagation of a pulse in a single-level computation. One can see here that
the pulse is cleanly injected, subtracted on the sides and then extracted at the end of its traversal.

On the other hand a close examination of the pulse extraction reveals there a small wave resulting
from the difference between numerical and analytical dispersions is generated towards the end of the
pulse traversal through the total-field region. This is shown in figure 3

Figure 5 compares the propagation for the pulse between 1- and 3-level computations. Here we
are looking at two pulse cross-sections, one for z € [45,50] and the other one for = € [75,79]. The
latter corresponds to the slice of the pulse that is very close to the total field boundary, where we
don’t generate higher level grids. See figure 4.

It is easy to see that in this region the pulses should overlap. On the other hand, in the middle of
the domain, i.e., for = € [45,50] the 3-level pulse is a little narrower. This is because the numerical
dispersion for the 3-level pulse is lower than for the 1-level pulse. The 3-level pulse does not over-
shoot either, whereas the 1-level pulse has a somewhat higher amplitude than the amplitude of the
analytical pulse, which is exactly 1.

There is a price for running computations on 3-levels in this case, apart from using markedly
more CPU resources, of course. The price is increased level of noise, which results from these 3
different dispersions and from a rather arbitrary criterion as to which parts of the computational
domain should be covered by which levels.

This is best seen when we look at the pulse withdrawal picture through a magnifying glass. This
is shown in figure 6, which should be compared with figure 3.

It is possible that we may be able to control or even eliminate this noise by handling data flow
on the coarse-fine level boundary much more astutely, for example, by carrying out the refluxing
procedure, mentioned in previous papers on a number of occasions (usually with dread). Such a
procedure will require a very detailed analytical examination of what exactly happens on the coarse-
fine level boundary and how any additional fixes should be implemented.

8.2 Fortran versus Chombo

The second group of tests is to compare data generated by running Fortran mainlines against data
generated by running a single-level Chombo job.

Well, this data turns out to be exactly the same for all test situations compared — and these
covered various current models, metal distribution models and pulse versus wave.

It is not immediately obvious that it should be so, because even a single level Chombo domain can
be partitioned amongst multiple processors, with ghost cell data exchanged between them several
times within every time step.

Of course, the general idea is that this should not affect the final results and it is rather rewarding
to see that this was indeed the case — at least for this generation of tests which were all run, this
should be kept firmly in mind, on a single CPU, even though the data was logically divided into
multiple (4 x 4) plaquettes.
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"Hz_0_065.dat"

0.012 -

0.01
0.008 -
0.006
0.004 -
0.002

-0.002

Figure 3: A close examination of the extraction of the pulse shows a small wave resulting from the
difference between numerical and analytical dispersion.

"Hz_0_035.dat"
"Hz_1_035.dat" -
"Hz_2_035.dat" --------

c00000000
RPNWAUOIONOOR

70

Figure 4: 3-level coverage of H, at t, = 70.03125 for level 0, t, = 70.010417 for level 1 and ¢, = 70.003472
for level 2.
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"1-level/model-0/Hz_0_035.dat"
"3-levels/model-0/Hz_0_035.dat" -------

"1-level/model-0/Hz_0_035.dat"
"3-levels/model-0/Hz_0_035.dat" -------

45 56 55 0 78.5

Figure 5: Comparison between 1-level and 3-level runs. The top figure compares the data in the middle
of the z-range, i.e., for z € [45, 50]. The bottom figure compares the data on the side of the z-range, i.e.,
for x € [75,79]. There is no multi-leveling on the side, because tag margins keep us away from tagging
cells too close to the total-field boundary.
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Figure 6: A close examination of the extraction of the pulse for the 3-level run. There is much more noise
here compared to figure 3.

8.3 Single Level versus Multi-Level: Quenching of Spikes

The most important question in all of this is, of course, if AMR gives us anything. The following
shows that it can have a beneficial effect if used judiciously. But it takes quite a few experiments to
arrive at proper threshold levels, and other cell-tagging criteria. Running a multilevel job is quite
taxing, because the amount of computation grows dramatically as we refine Chombo grids. Still,
because the refined grid is applied only where it is needed, some, perhaps even considerable CPU
savings should result compared to a run in which the whole grid would correspond to the finest
AMR level. On the other hand if a single grid computation with a very short grid constant could be
carried out, e.g., on an ORNL Cray X1 or on an ANL IBM BlueGene, such a computation would
probably yield much lower noise level and would be a lot easier to set up: a simple HPF program
could be used in this case.

So, let us have a look at the results of a 3-level computation, versus a 1-level one, for a case of
a TE pulse scattering on a single round silver cylinder. This corresponds to the metal distribution
model 2, cf. section 4. When this problem is attacked on a single-level 100 x 100 grid snapshots
30 and 35 look as shown in figure 7 On the other hand, when computation for the same situation
is carried out on three levels and a fixed high-resolution grid is placed around the periphery of
the cylinder, the spikes disappear, as shown in figure 8. We can look at the cylinder boundary in
as much magnification as this 3-level computation affords. Figure 9 shows H, at the edge of the
cylinder obtained from level 2 data. The saw-tooth approximation of the curve is clearly seen, but. ..
there are no spikes!

It is instructive to look also at the E field at various levels. And so, figure 10 shows fields E,
and Ey for snapshot number 30 at levels 0 and 2. Here it is easy to see why the computation is so
difficult and why being able to increase the resolution at least in certain locations helps. We have
to deal with very steep gradients of E on the cylinder boundary. Figure 10 shows that there is an
unhealthy fluctuation of E right at the boundary visible in level 2 data. Luckily the amplitude of
these fluctuations is not great and fluctuations in E, and in E, cancel so that they don’t carry
to H,. Nevertheless this picture does suggest that we may consider adding a yet another level of
computation to the system.
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"1-level/imodel-2/Hz_0_030.dat" ——

"1-level/imodel-2/Hz_0_035.dat" ——
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Figure 7: H, spikes form
one-level simulations.
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"3-levels/model-2/Hz_0_030.dat" ——

"3-levels/model-2/Hz_0_035.dat" ——
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Figure 8: H, spikes disappear from the cylinder boundary when simulation is carried out on 3 levels with
high resolution mesh covering the boundary of the cylinder at all times.
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"3-levels/model-2/Hz_2_030.dat" ——

"3-levels/model-2/Hz_2_035.dat" ——

Figure 9: A magnified level-2 image of the cylinder boundary for snapshots number 30 and 35.
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9 What Next

9.1 Parallelization

In order for this code to be usable, it needs to run on a multiprocessor. Right now simulations with
100 x 100 resolution at level 0 through 400 x 400 resolution at level 2 are possible, but we would
really like to go to something like 10,000 x 10,000 at lever 2. A system like this cannot be tackled

on a single PC, but it can be attacked on a farm.
The code is parallel in principle already. For example, all constructs such as:

for (data_iterator_n.reset(); data_iterator_n.ok();
++data_iterator_n)

update_d_(
&(D_n[data_iterator_n()].loVect()[0]), // imin
&(D_n[data_iterator_n()].hiVect () [0]), // imax
&(D_n[data_iterator_n()].loVect()[11), // jmin
&(D_n[data_iterator_n()].hiVect()[1]1), // jmax
D_n[data_iterator_n()].dataPtr(0), // dx
D_n[data_iterator_n()].dataPtr(1), // dy
H_n[data_iterator_n()].dataPtr(0), // hz
&delta_x_n, // delta_x
&delta_y_n, // delta_y
&time_e_n, //t
&delta_t_n, // delta_t
&fortran_verbose // verbose
);

D_n.exchange (two_slots);
time_e_n = time_e_n + delta_t_n;
E_fill_boundary.fillInterp(D_n, D_coarse_old, D_coarse, 1.0/3.0, 0, 0, 2);

are parallel. Here Chombo is going to execute update_d_ on plaquettes that live on separate CPUs, if
such have been configured into the system. The call D_n.exchange (two_slots) will exchange ghost
nodes data between CPUs. Finally E_fill_boundary.fillInterp will carry out interpolation of
fine-level boundary data from a coarse grid to the fine one also in parallel on various CPUs, each
looking after its own plaquettes. Chombo takes care of moving data between CPUs in this case, since
the coarse grid processor layout may well be different from the fine grid processor layout.

On the other hand, constructs such as scanning through all boxes in order to find minimum
and maximum, as implemented in function analyze_levels, defined on levels_Ch.cpp, are not
parallel, even though Chombo will attempt to execute them in parallel on a multiprocessor. The
reason for the break in parallelizm is that the current function assumes that all CPUs can see data
from all other CPUs, in particular, the min/max data. This is not the case. Each Chombo CPU can
only see its own data. If a data exchange needs to be carried out other than the exchange method for
filling ghost nodes, an explicit MPI gather or scatter operation must be invoked. Chombo provides
auxiliary utilities for doing this, and what’s needed at this stage is to comb through the existing
code, locate places, where explicit scatter or gather must be invoked and modify the code as needed.

There are only a few such places and the ones that I am aware of are linked to Gnuplot graphics,
which the parallel version is going to disable anyway.

But before we can run this program in parallel, we’ll have to rebuild Chombo libraries and link
them with MPI, MPI-IO, HDF5 and HDF5/MPI. Then we’ll have to link the Chombo program with
Chombo libraries so constructed. MPI-TIO itself must be configured so that it supports PVFS.
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9.2 Gnuplot Graphics

Gnuplot graphics proved enormously useful in this project. To be able to view a 3-d surface repre-
senting a 2-d field provides a very precise and quick way of checking the computation. One can easily
superimpose several fields on a single display and debug even quite complex problems. A single spike
or instability can be easily located. Colour maps provided by ChomboVis for 2D Chombo data are
not this useful.

Yet Gnuplot cannot be used in the MPI mode — well, not easily and certainly not on very large
data sets. So we’ll have to switch to HDF5 data dumps and to ChomboVis for visualization of the
data. After about 2 weeks of struggle, I managed to get ChomboVis going under Cygwin. It should
be much easier under Linux. A Linux version of ChomboVis is running on MCS workstations.

Two things could be done in order to display HDF5 data as 3-d surfaces. We could write an
auxiliary program that would extract data from HDF5 files and would write it out as Gnuplot data
files. Another option would be to make Rocketeer read HDF5 data dumped by Chombo applications.
This would give us another tool, apart from ChomboVis, for data analysis.

9.3 Production 2D Code

This version of the code has been revised extensively in order to make it a production code. The
logic of the code is much cleaner, as is movement and distribution of data within the code. Nearly
all parameters can be passed to the run through the input file.

The next version of the code will extract d_to_e from the code and reformulate it in Chombo
Fortran. Chombo Fortran is somewhat reminiscent of F90. It is a simple preprocessor that takes an
input file and generates required Chombo headers and interfaces automatically, while compiling it to
standard F77 at the same time. The resulting system should be then quite easy to use. The user will
be burdened basically with writing d_to_e only, and then plugging it into the multi-level Chombo
program for compilation and parallel execution.

Once we have reached this stage, the code will be frozen and configured into the ANL BitKeeper
for future maintenance and revisions. In this form it will be also used for further code correctness
tests.

A simple user manual, apart from the code annotation document, will be developed.

9.4 3D code

After the current 2D code is completed, the next stage will be to develop a similar 3D code. I have,
I think, a well defined algorithm for electrodynamic refluxing in the 3D case, that derives directly
from the 3D version of Maxwell equations in the integral form. So this feature can be added and
tested. But 3D codes in general are very hard to debug, because of the amount of data they generate.
Development of the 3D code will require access to high-bandwidth visualization facilities.
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